文章编号: 1003-1480 (2006) 03-0033-03

用加速量热仪研究 ε -HNIW 的热稳定性

刘进全, 欧育湘, 孟征, 王艳飞, 吴相国

(北京理工大学材料科学与工程学院,北京,100081)

摘 要:采用加速量热仪(ARC)研究了 -HNIW 的热稳定性,得到了 -HNIW 样品在绝热条件下热分解温度和 压力随时间的变化曲线,以及自热速率、分解气体产物压力随温度的变化曲线,分析了在绝热条件下热分解反应动力 学,计算了表观活化能 *E* 为 256.28kJ/mol,指前因子为 5.56 × 10²⁵s⁻¹。

关键词:物理化学;加速量热仪;HNIW;热分解;活化能 中图分类号:TQ560.72 文献标识码:A

Study on Thermal Stability of -HNIW by Accelerating Rate Calorimeter

LIU Jin-quan, OU Yu-xiang, MENG Zheng, WANG Yan-fei, WU Xiang-guo

(Beijing Institute of Technology, Beijing, 100081)

Abstract : The thermal stability of ε -HNIW was researched by an accelerating rate calorimeter. The curves of thermal decomposition temperature and pressure versus time, self-heating rate and pressure versus temperature were obtained. According to adiabatic theory, the activation energy E = 256.28kJ/mol and pre-exponential factor 5.56×10^{25} s⁻¹ were obtained.

Key words : Physical chemistry; Accelerating rate calorimeter (ARC) ; HNIW; Thermal decomposition; Activation energy

六硝基六氮杂异伍兹烷(HNIW)从 1987 年首次 合成以来,一直为各国含能工作者研究的热点^[1-5]。目 前,HNIW 的热分解及稳定性研究普遍采用差热分析 (DTA)、差示扫描量热分析(DSC)。因 DTA 和 DSC 方 法所需要的样品量小、测试时间短,所测得的物质热 分解温度会因升温速率的不同而发生变化,因而采用 这两种方法进行分析所得的动力学参数都与实际生 产应用相差较大。加速量热仪(ARC)是一种基于绝热 原理设计的热分析仪器,可使用较大的样品量,热惰 性较小,同时提供温度和压力数据。目前 ARC 已成 为国际上评价物质热稳定性的常用测试方法之一,并 逐步成为标准测试发展方向。 1 实验

样品 -HNIW 纯度达 99%。所用仪器为美国 Dow 公司产品。ARC 原理及结构的详细描述参见文献 ⁶⁹。将 0.136 4g 样品装到质量为 6.563 4g 的样品室中, 起始测试温度设置为 100 ,斜率敏感度 0.02 /min。 当样品反应系统(包括样品和样品室)温度达到 100 后,量热仪开始加热-等待-搜寻的循环操作过程,当 样品室热电偶检测到反应系统的温升速率超过了斜 率敏感度(0.02 /min)时,反应系统将依靠反应放热加 热自身,加速量热仪的数据采集系统自动记录整个绝 热分解过程的温度和压力随时间的变化。所测样品量

收稿日期:2005-12-02 作者简介:刘进全(1977-),男,讲师,主要从事高能量密度化合物的合成、工艺与应用研究。

2006年第3期

及测试条件如表1所示。

表1 样品质量及测试条件

Tab.1	Mass of samples and measuring conditions

样品		-HNIW	
样品质量/g		0.136 4	
样品室质量/g		6.563 4	
起始温度/		100	
斜率敏感度/(• min ⁻¹)	0.02	

2 结果与讨论

在绝热条件下, -HNIW样品的加速量热仪测 试数据及热分解特性参数的测试数据分别见表2及 表3。

表2 用ARC测试 ε-HNIW热分解数据

Tab.2 The thermal decomposition data of € -HNIW determined by ARC

时间	温度	压力	温升速率
/min	/	/kPa	/(• min⁻¹)
54.51	181.04	222.02	0.086
59.51	181.72	230.29	0.133
64.75	182.47	237.88	0.153
69.79	183.20	246.15	0.145
74.79	183.95	252.36	0.159
79.61	184.72	264.77	0.175
83.03	185.28	272.35	0.153
88.87	186.30	284.07	0.166
92.87	187.07	297.17	0.192
97.21	187.97	316.48	0.218
102.01	189.07	332.34	0.227
107.31	190.49	358.54	0.277
112.19	191.98	390.26	0.318
117.37	193.91	414.39	0.416
123.03	196.62	422.66	0.500
124.91	197.73	425.42	0.555
125.59	198.20	437.83	0.630
126.59	198.88	450.93	0.785
127.03	199.23	468.17	0.715
128.11	200.09	484.72	0.796
129.29	201.15	496.44	0.898
130.31	202.19	510.92	1.019
131.21	203.24	527.47	1.166
131.85	204.07	2 237.43	1.296
132.55	205.10	2 233.98	1.471
133.15	206.19	2 231.22	1.816
133.29	238.57	2 229.15	231.285
133.31	239.26	222.02	34.500
133.33	239.69	230.29	21.500
133.35	239.90	237.88	10.500
133.43	239.46	246.15	-5.500

表3 ε-HNIW热分解特性参数测试结果

Tab.3 The thermal decomposition characteristic data of ε

-HNIW determined by ARC					
初始速率/(·min⁻¹)	0.086				
初始分解温度/	181.04				
初始压力/MPa	0.22				
最大温升速率/(・min ⁻¹)	231.285				
最大温升速率时的温度/	238.57				
最大压力/kPa	2 237.43				
结束温度/	239.46				
结束压力/ kPa	246.15				
反应时间/min	78.92				
绝热温升/	58.86				

由表 2 可见, -HNIW 在 100 时没有发生分 解,181.04 开始分解,对应的温升速率为 0.086 /min (大于测试灵敏度 0.02 /min),初始的分解压 力为 222.02kPa。在 181.04 开始分解之后,在 68.52min内,系统的温度一直在 196.62 以下,压力 也只是由 222.02kPa 变化到 422.66kPa,温升速率一直 在 0.500 /min 以下缓慢地增加,这表明系统放热量 较小,样品分解处于缓慢初始阶段。但随后在 10.32min内,分解的速率就发生了根本性的变化,温 度突升至 239.9 ,压力增大至 2 237.43kPa,温升速 率达到最大值 231.285 /min,随后温升速率迅速下 降,这表明在这一阶段内系统的放热量比较大,样品 分解进入快速分解阶段,且样品分解完全。

绝热条件下的速率方程可表示为:

$$m_t = \frac{\mathrm{d}T}{\mathrm{d}t} = K \left(\frac{T_f - T}{\Delta T_{ad}}\right)^n \Delta T_{ad} \qquad (1)$$

(1)式中:m_t——反应系统在时刻 t时的温升
 速率 , /min ;

 T_f ——反应结束时反应系统的温度,;

T——反应系统在时刻 t时的温度,;;

 ΔT_{ad} ——反应系统的绝热温升,

n——反应级数。

对于活化能(*E*)较大的反应(*E*>109.2kJ/mol)⁷⁷,反应的大部分时间处于达到最大速率(*m*_m)之前的阶段。达到最大速率之后,反应速率将迅速下降。

对于反应级数为 n的反应,达到最大速率之前的时间(θ_m)可近似地表示为:

$$\theta_m = \frac{RT^2}{m_e E} - \frac{RT_m^2}{m_m E}$$
(2)

对于活化能大的反应 , m_m 非常大。 (2) 式中 右边第 2 项可忽略不计 , 即可写为 :

$$\theta_m \approx \frac{RT^2}{m_t E}$$

根据 Arrhenius 方程及绝热速率方程可得:

$$\ln \theta_m = \ln \frac{RT^2}{E(\frac{T_f - T}{\Delta T_{ad}})^n \Delta T_{ad}} - \ln A + \frac{E}{R} \cdot \frac{1}{T}$$

方程右边第 2 项 ln *A* 远远大于第 1 项,因此可 近似写为: $\ln \theta_m = \frac{E}{R} \cdot \frac{1}{T} - \ln A$ (3)

这是一个直线方程,可从斜率中求出活化能,从 截距中求出指前因子。

由最大温升速率时间和温度曲线求取 -HNIW 了绝热分解活化能为 256.28kJ/mol,指前因子为 5.56 ×10²⁵s⁻¹,回归直线及其方程见图 1。

3 结论

(1)对 -HNIW 的绝热分解过程进行了测定,

发现 -HNIW 的绝热分解突越性很大,在开始分解 后的 68.52min 内,系统温升仅有 15.58 ,压力变化 也只有 200.64kPa,温升速率在 0.5 /min 以下。但随 后系统温度、压力和温升速率增长迅速,在 10.32min 内达最大值。

(2)由最大温升速率时间和温度曲线求取 -HNIW 了绝热分解的活化能为 256.28kJ/mol,指前因 子为 5.56 × 10²⁵s⁻¹。

参考文献:

- S. Löbbecke, M. A. Bohn, A. Pfeil et al. Thermal behavior and stability of HNIW(CL-20)[C]. Germany: 29th Int. Annu. Conf. ICT, 1998 : 145-1~145-15.
- [2] D.G. Patil, T. B. Brill. Kinetics and mechanism of thermolysis of hexanitrohexazaisowurtzitane[J]. Combustion and Flame, 1991, (87):145~151.
- [3] 陈松林,刘家彬,尉淑琼等.六硝基六氮杂异伍兹烷的热
 分解反应动力学研究[J].含能材料,2002,10(1):46~
 48.
- [4] M.Golfier, H. Graindorge, Y. Longevialle et al. New energetic molecules and their applications in energetic materials[C]. Germany: 29th Int. Annu. Conf. ICT, 1998 : 3-1~3-18.
- [5] P. Braithwaite, D. Robert, B. Ashcroft. DDT characteristics of CL-20 s[C]. Germany: 33th Int. Annu. Conf. ICT , 2002 : 130-1~130-7.
- [6] 钱新明,傅志敏,张文明等. NH4NO3 和 NH4ClO4 的绝热 分解研究[J]. 含能材料,2001,9(4):156~160.
- [7] 王耘. 含能材料热安定性的绝热评价方法研究[D]. 北京: 北京理工大学, 1998.